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ABSTRACT 
 

     This paper is concerned with the theory of chiral Cosserat elastic plates. In 1967 
Eringen established a theory of isotropic achiral plates in the framework of Cosserat 
elasticity. This theory is based on the assumption that the microrotation vector does not 
vary across the thickness of the plate. De Cicco and Iesan (2013) extended to chiral 
Cosserat elastic plates without using this assumption. In contrast with the theory of 
achiral plates, the stretching and flexure in the chiral plates, cannot be treated 
independently of each other. In this paper we consider the problem of an infinite plate 
with a circular hole. The plate is subject to uniform pressure at infinity. We solve the 
problem in closed form. 
 
1. INTRODUCTION 
 
     In recent years many researches have been devoted to the study of the mechanical 
behaviour of chiral materials. These investigations are motivated by the recent interest 
in the using the chiral elastic materials as a model for carbon nanotubes (Chandraseker, 
K., Mukherjee, 2006), bones (Park, H.C., Lakes, R.S., 1986), honeycombs structures 
(Prall, D., Lakes, R. S., 1997) as well as auxetic materials (Donescu, S., Chiroiu, V., 
Munteanu, L., 2009). The behaviour of these materials is strongly dependent by chirality 
and cannot be described by means of the classical theory of continua. Lakes (2001) 
presented some simple examples illustrating chirality in deformation of slabs and plates. 
In this paper we investigate a two-dimensional problem in the theory of chiral Cosserat 
solids. We study the deformation of a thin plate with a circular hole under constant 
pressure at infinity. In contrast with the case of achiral plates the stretching and flexure 
cannot be treated independently of each other (Iesan D. 2010). The problem under 
consideration is a typical application of the classical two-dimensional elasticity. 
Subsequently, the problem has been extended to non classical solids (De Cicco S. 2003, 
Iesan D. 2009, De Cicco S. 2014, De Cicco S., De Angelis F. 2019). The solution is 
significant in the analysis of structural fatique and is of crucial importance in the study of 
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the behaviour of structural members with irregularities. 
A theory of achiral Cosserat elastic plates was established by Eringen (1967). This theory 
is based on the assumption that the microrotation vector does not vary across the 
thickness of the plate. De Cicco and Iesan (2013) extended the theory to the case of 
chiral Cosserat elastic plates without using this assumption. 
In Section 2 we present the basic equations of chiral Cosserat elastic solids. In Section 
3 we summarize the field equations of the theory of thin plate. In Section 4 we study the 
deformation of a circular plate with a circular hole under uniform pressure at infinity. The 
main feature is that in the case of chiral plates, a uniform pressure acting on the boundary 
of the plate at infinity produces a microrotation of the material particles. 
 
2. PRELIMINARIES 
 
     Let u and φ be the displacement vector field and the microrotation vector field on 
a body B, respectively, we summarize the basic equations of the equilibrium theory for 
chiral Cosserat elastic solids 
     geometrical equations 

𝑒𝑖𝑗 = 𝑢𝑗,𝑖 + 𝜀𝑖𝑗𝑘𝜑𝑘,       𝜒𝑖𝑗 = 𝜑𝑗,𝑖 (1) 

     equilibrium equations 
𝑡𝑗𝑖,𝑗 + 𝑓𝑖 = 0,      𝑚𝑗𝑖,𝑗 + 𝜀𝑖𝑗𝑘𝑡𝑗𝑘 + 𝑔𝑖 = 0 (2) 

     constitutive equations 
𝑡𝑖𝑗 = 𝜆𝑒𝑟𝑟𝛿𝑖𝑗 + (𝜇 + 𝜅)𝑒𝑖𝑗 + 𝐶1𝜒𝑠𝑠𝛿𝑖𝑗 + 𝐶2𝜒𝑗𝑖 + 𝐶3𝜒𝑖𝑗  

𝑚𝑖𝑗 = 𝛼𝜒𝑟𝑟𝛿𝑖𝑗 + 𝛽𝜒𝑗𝑖 + 𝛾𝜒𝑖𝑗 + 𝐶1𝑒𝑟𝑟𝛿𝑖𝑗 + 𝐶2𝑒𝑗𝑖 + 𝐶3𝑒𝑖𝑗. (3) 

 
We have used the following notations: 𝑒𝑖𝑗  and 𝜒𝑟𝑠  are strain tensors, 𝜀𝑖𝑗𝑘  is the 

alternating symbol, 𝑡𝑖𝑗 is the stress tensor, 𝑚𝑖𝑗 is the couple stress tensor, 𝑓𝑖 is the 

body force, 𝑔𝑖  is the body couple, 𝜆, 𝜇, 𝜅, 𝛼, 𝛽, 𝛾, 𝐶1, 𝐶2  and 𝐶3  are constitutive 
constants and 𝛿𝑖𝑗 is the Kronecker’s delta. 

As consequence of the positive definiteness of the elastic potential we deduce the 
following inequalities (see [6]) 
 

𝜆 + 2𝜇 + 𝜅 > 0,     2𝜇 + 𝜅 > 0    𝜅 > 0  

𝛾 + 𝛽 > 0   𝛾 − 𝛽 > 0, (4) 
(𝜆 + 2𝜇 + 𝜅)(𝛼 + 𝛽 + 𝛾) − (𝐶1 + 𝐶2 + 𝐶3)2 > 0  

We denote by 𝑡𝑖 the surface force and by 𝑚𝑖 the surface moment acting at a regular 
point of 𝜕𝐵. The boundary conditions are given by 

𝑡𝑖 = 𝑡𝑗𝑖𝑛𝑗 ,    𝑚𝑖 = 𝑚𝑗𝑖𝑛𝑗. (5) 

The equilibrium problem of an elastic chiral Cosserat body consists in the solving of the 
system of equations (1)-(3) with the boundary conditions (5). 
 
3. CHIRAL COSSERAT PLATES 
 
In the following we consider a right cylinder of isotropic material which occupies the 
region 𝐵. We denote by 𝛴 the open cross-section, 𝛤 the boundary of 𝛴 and 𝛱 the 
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lateral boundary. The axis 𝑂𝑥3 of our coordinate system is chosen in such a way that 
the plane 𝑥1𝑂𝑥2 is the middle plane. The cylinder is assumed to be of length 2ℎ. 
In the theory of chiral Cosserat elastic plates formulated by De Cicco-Iesan in [] the 
stretching and the flexure of plates cannot be treated independently of each other. The 
theory is based on the assumption that the displacement 𝒖 and the microrotation 𝝋 
assume the form 

𝑢𝛼 = 𝑤𝛼(𝑥1, 𝑥2) + 𝑥3𝑣𝛼(𝑥1, 𝑥2),    𝑢3 = 𝑤3(𝑥1, 𝑥2)  

𝜑𝛼 = 𝜓𝛼(𝑥1, 𝑥2) + 𝑥3𝜅𝛼(𝑥1, 𝑥2),    𝜑3 = 𝜓3(𝑥1, 𝑥2) (6) 
 
In (6) 𝑤𝛼  and 𝜓3  characterize the extension and 𝑣𝛼 , 𝑤3  and 𝜓𝛼  the flexure of the 
cylinder. 
The equilibrium equations of chiral Cosserat elastic plates are given by 

𝜏𝛼𝑠,𝛼 + 𝐹𝑠 = 0,  

𝜇𝛽𝛼,𝛽 + 𝜀3𝜌𝛼(𝜏3𝜌 + 𝜏𝜌3) + 𝐺𝛼 = 0, (7) 

𝜇𝛼3,𝛼 + 𝜀3𝜌𝛽𝜏𝜌𝛽 + 𝐺3 = 0, 

where we have used the notations 

𝜏𝑖𝑗 =
1

2ℎ
∫ 𝑡𝑖𝑗𝑑𝑥3,    𝜇𝑖𝑗 =

1

2ℎ
∫ 𝑚𝑖𝑗𝑑𝑥3,

ℎ

−ℎ

ℎ

−ℎ

 
 

𝐹𝑖 =
1

2ℎ
(∫ 𝑓𝑖𝑑𝑥3 + [𝑡3𝑖]−ℎ

ℎ    
ℎ

−ℎ

) 
(8) 

𝐺𝑖 =
1

2ℎ
(∫ 𝑔𝑖𝑑𝑥3 + [𝑚3𝑖]−ℎ

ℎ    
ℎ

−ℎ

) 
 

 

 

 
The equations (7) are obtained by integrating the equilibrium equations (2) with respect 
to 𝑥3 over the thickness of the plate. 
To the equilibrium equations (7) we must adjoin the following equations 
 

𝐻𝜎𝛽𝛼,𝛽 − 2ℎ𝜏3𝛼 + 𝐻𝛼 = 0,  

𝐻𝜋𝛽𝛼,𝛽 + 𝜀3𝜌𝛼𝐻(𝜎3𝜌 − 𝜎𝜌3) − 2ℎ𝜇3𝛼 + 𝑃𝛼 = 0 (9) 

where 
 

∫ 𝑥3𝑡𝑖𝑗𝑑𝑥3 =
2

3
ℎ3 𝜎𝑖𝑗  ,

ℎ

−ℎ

 
 

∫ 𝑥3𝑚𝑖𝑗𝑑𝑥3 =
2

3
ℎ3 𝜋𝑖𝑗  ,

ℎ

−ℎ

 
 

∫ 𝑥3𝑓𝛼𝑑𝑥3 + [𝑥3𝑡3𝛼] = 𝐻𝛼,
ℎ

−ℎ

 
 

∫ 𝑥3𝑔𝛼𝑑𝑥3 + [𝑥3𝑚3𝛼] = 𝑃𝛼 ,    𝐻 =
2

3
ℎ3 

ℎ

−ℎ

 
(10) 

The equations (9) are obtained taking the cross product of the equations (2) with the 
vector 𝑥3𝒆𝟑 where 𝒆𝟑 is the unit outward normal to the plane 𝑥1𝑂𝑥2, and integrating 
over the thickness of the plate. 
The boundary conditions (5) are rewritten in the form 



The 2021 World Congress on 
Advances in Structural Engineering and Mechanics (ASEM21)
GECE, Seoul, Korea, August 23-26, 2021

  

𝜏𝛽𝜅𝑛𝛽 = 𝜏𝜅
∗ ,     𝜇𝛽𝜅𝑛𝛽 = 𝜇𝜅

∗ ,    

𝜎𝛽𝛼𝑛𝛽 = 𝜎𝛼
∗ ,     𝜋𝛽𝛼𝑛𝛽 = 𝜋𝛼

∗    𝑜𝑛 𝛤 (11) 

where 𝜏𝜅
∗ , 𝜇𝜅

∗ , 𝜎𝛼
∗ , and 𝜋𝛼

∗  are prescribed functions. 
In the case of two dimensional problem, we suppose that  

𝑤3 = 0,    𝜓3 = 0.  (12)  
Moreover, we consider null body loads  

𝐹𝑠 = 0,   𝐺𝑠 = 0,   𝐻𝛼 = 0,   𝑃𝛼 = 0. (13) 

The equations (7) and (9) can be written in terms of the functions 𝑤𝛼, 𝜓𝛼, 𝜈𝛼 and 𝜒𝛼. 
We have 
 

(𝜇 + 𝜅)𝛥𝑤𝛼 + (𝜇 + 𝜆)𝑤𝛽,𝛽𝛼 + 𝐶3𝛥𝜓𝛼 + (𝐶1 + 𝐶2)𝜓𝛽,𝛽𝛼 = 0  
 

𝜅𝜀3𝛼𝛽𝜓𝛽,𝛼 + 𝜇𝜈𝜌,𝜌 + 𝐶2𝜒𝜌,𝜌 = 0  
 

𝐶3𝛥𝑤𝛼 + (𝐶1 + 𝐶2)𝑤𝛽,𝛽𝛼 + 𝛾𝛥𝜓𝛼 + (𝛼 + 𝛽)𝜓𝛽,𝛽𝛼 + 𝜅𝜀3𝛽𝛼𝜈𝛽 −  

                 −2𝜅𝜓𝛼 + (𝐶3 − 𝐶2)𝜀3𝛽𝛼𝜒𝛽 = 0  

                       𝜅𝜀3𝛽𝛼𝑤𝛼,𝛽 + 2𝜀3𝛼𝛽(𝐶3 − 𝐶2)𝜓𝛽,𝛼 + 𝐶2𝜈𝛼,𝛼 + 𝛽𝜒𝜌,𝜌 = 0,  
 

𝐻[(𝜇 + 𝜅)𝛥𝜈𝛼 + (𝜆 + 𝜇)𝜈𝛽,𝛽𝛼 + 𝐶3𝛥𝜒𝛼 + (𝐶1 + 𝐶2)𝜒𝜌,𝜌𝛼] −  

        −2ℎ[𝜅𝜀3𝛽𝛼𝜓𝛽 + (𝜇 + 𝜅)𝜈𝛼 + 𝐶3𝜒𝛼] = 0  

                     𝐻[𝛾𝛥𝜒𝛼 + (𝛼 + 𝛽)𝜒𝛽,𝛽𝛼 + 𝐶3𝛥𝜈𝛽 + (𝐶1 + 𝐶2)𝜈𝛽,𝛽𝛼] −  

                  −2𝐻 𝜅𝜒𝛽 − 2ℎ[(𝐶2 − 𝐶3)𝜀3𝛽𝛼𝜓𝛽 + 𝛾𝜒𝛽 + 𝐶3𝜈𝛽] = 0, (14) 

 
where 𝛥 is the two-dimensional Laplacian. 
Existence and uniqueness theorems of the solution of the system (14) has been 
presented by De Cicco and Iesan (). 
 
A PLATE WITH A CIRCULAR HOLE 
 
In this section we consider a circular infinite plate with a circular hole under uniform radial 
pressure at infinity. The boundary of the hole is supposed to be a stress free. 

Let 𝑟 = (𝑥1
2 + 𝑥2

2)1 2⁄  and 𝑎 be a positive constant. We assume that 𝑎 is the radius of 

the hole and the region 𝛴 is defined by 𝛴 = {(𝑥1, 𝑥2, 𝑥3): 𝑥1
2 + 𝑥2

2 > 𝑎,   𝑥3 = 0}. Let 𝑝 
be a given constant the boundary conditions are given by 
 

𝜏𝑘
∗ = 0,    𝜇𝑘

∗ = 0,    𝜎𝛼
∗ = 0,   𝜋𝛼

∗ = 0   on 𝑟 = 𝑎   
𝜏𝛽 = 𝑝𝑛𝛽 ,    𝜇𝑘

∗ = 0,    𝜎𝛼
∗ = 0,   𝜋𝛼

∗ = 0   𝑓𝑜𝑟 𝑟 → ∞ (15) 

 
We introduce the unknown functions 𝑈, 𝛹, 𝑆 and 𝑄 satisfying the following equality 
 

𝑤𝛼 = 𝑈,𝛼,    𝜓𝛼 = 𝛹,𝛼,    𝜈𝛼 = 𝜀3𝛼𝛽𝑆,𝛽 ,    𝜒𝛼 = 𝜀3𝛼𝛽𝑄,𝛽 . (16) 

 
Using the relations (16) the system (14) reduces to 
 

𝛥(𝜁1𝑈 + 𝑐𝛹) = 0   
𝑐𝛥𝑢 + 𝜁2(𝛥 − 𝑠2)𝛹 + 𝜅𝑆 + (𝐶3 − 𝐶2)𝑄 = 0  
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(𝛥 − 𝑑2)[(𝜇 + 𝜅)𝑆 + 𝐶3𝑄] + 𝜅𝑑2𝛹 = 0  

 
𝐶3(𝛥 − 𝑑2)𝑆 + 𝛾(𝛥 − 𝑝2)𝑄 + 𝑑2(𝐶3 − 𝐶2)𝛹 = 0 (17) 

where  
𝑠 = [2𝜅/(𝛼 + 𝛽 + 𝛾)]1 2⁄ ,    𝑑 = (2ℎ/𝐻)1 2⁄ ,     𝑝 = [(𝑑2𝛾 + 2𝜅)/𝛾]1 2⁄     

𝑦1 = 𝜆 + 2𝜇 + 𝜅,     𝜁2 = 𝛼 + 𝛽 + 𝛾,    𝑐 = 𝐶1 + 𝐶2 + 𝐶3 (18) 
 
Let 𝑉 = 𝑉(𝑟) be a function of class 𝐶6, satisfying the equations 

𝛥𝑉 = 0 (19) 

where 𝐷 is the operator  
𝐷 = 𝛾1(𝛥 − 𝐾1

2)(𝛥 − 𝐾2
2)(𝛥 − 𝐾3

2) (20) 

and 

𝛾1 = 𝛽1𝑒1 − 1,    𝛽1 =
𝐶3

𝛾
,    𝑒1 =

𝐶3

𝜇 + 𝜅
. 

(21) 

In (20) the constants 𝐾𝑠 are the roots of the equation  
𝑎1𝑥3 − 𝑎2𝑥2 + 𝑎3𝑥 + 𝑎4 = 0 (22)  

where the coefficients 𝑎𝑠 are given by  
𝑎1 = 𝛾1,   𝑎2 = 𝛾1(𝑞2 + 𝑑2) + 𝛾2,  

𝑎3 = 𝛾1𝑞2𝑑2 + 𝛾2(𝑞2 + 𝑑2) + 𝛽3𝛾3 +
1

2
𝑞2𝛾3, 

 

𝑎4 = [𝑞2 (
1

2
𝛽2𝑒1 − 𝛾2) − 𝛽3(𝛽2 − 𝛽1𝑒2)] 𝑑2 −

1

2
𝑝2𝑞2𝑒2.  

 

 
𝛾2 = 𝛽1𝑒1𝑑2 − 𝑝2,     𝛾3 = 𝑒2 − 𝛽2𝑒1,  

  

𝛽2 =
𝑑2(𝐶3 − 𝐶2)

𝛾
,        𝛽3 =

𝜁1(𝐶3 − 𝐶2)

𝑑1
,   𝑒2 =

𝜅𝑑2

𝜇 + 𝜅
 

 

𝑞2 =
2𝜅𝜁1

𝑑1
,   𝑑1 = 𝜁1𝜁2 − 𝑐2 . 

(23) 

The function 𝑉 can be expressed as  
𝑉 = 𝐵𝑖𝑉𝑖 (24) 

where 𝐵𝑖 are arbitrary constants and the functions 𝑉𝑖 satisfy the equation  
(∆ − 𝐾𝑖

2)𝑉𝑖 = 0 (25) 

[ no sum; i=1,2,3]. 
The displacement and the stress must be finite at infinity. Under this condition the solution 
of equation (25) is given by 

𝑉𝑖 = 𝐾0(𝐾𝑖𝑟), (26) 

where 𝐾𝑛 is the modified Bessel function of order 𝑛 of the third kind. From (24) we have  
𝑉 = ∑𝑖=1

3 𝐾0(𝐾𝑖𝑟), (27) 

From (17) and (27) the functions 𝛹, 𝑆 and 𝑄 are explicitly determined  
𝛹 = ∑𝑖=1

3 𝑎1𝑖𝐵𝑖𝐾0(𝐾𝑖𝑟),    𝑆 = ∑𝑖=1
3 𝑎2𝑖𝐵𝑖𝐾0(𝐾𝑖𝑟),                                       

                                   𝑄 = ∑𝑖=1
3 𝑎3𝑖𝐵𝑖𝐾0(𝐾𝑖𝑟),  (28) 

where  
𝑎1𝑖 = 𝛾1𝐾𝑖

2(𝐾𝑖
2 − 𝑑2),      𝑎2𝑖 = (𝑒2 − 𝛽2𝑒1)𝐾𝑖

2 − (𝑒2𝑝2 − 𝛽2𝑒1𝑑2),  

                  𝑎3𝑖 = (𝛽2 − 𝛽1𝑒2)(𝐾𝑖
2 − 𝑑2) (29) 

 
The solution of (17)1 gives 
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𝑈 = −𝜁𝛹 + 𝐵0 + 𝐵4𝑙𝑛 𝑟 (30)  
where 𝜁 = 𝑐/𝜁1, and 𝐵0 and 𝐵4 are arbitrary constants. 

By imposing the boundary conditions (15) we determine the constants 𝐵𝑠  and the 
problem is solved. 
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